The SWITCH function takes an argument expression (Arg) and checks in which predefined value intervals [(E1 + E2)/2; (E2 + E3)/2, ... ; (En-1 + En)/2] it falls. It then returns the respective predefined result value [R1; R2, ... ; Rn]. That is, R2 is returned if (E1+E2)/2 < Arg <= (E2+E3)/2.
switch (Arg, E1, R1, E2, R2, E3, R3 …, En, Rn)
As a graph:
As a table:
When Arg is |
The function returns |
Arg < = (E1+E2)/2 |
R1 |
(E1+E2)/2 < Arg < = (E2+E3)/2 |
R2 |
(E2+E3)/2 < Arg < = (E3+E4)/2 |
R3 |
.... |
... |
(En+1+En)/2 < Arg |
Rn |
SWITCH functions are appropriate when the return value depends on specific values of the argument. As a result, the above function can be read like this:
Arg |
Returns |
E1 |
R1 |
E2 |
R2 |
... |
... |
En |
Rn |
Let's consider how we can use a SWITCH function for a parameter whose value depends on the material thickness.
We will use a SWITCH function in which the parameter SW depends on the values of the material thickness d(). The dependence is expressed in this pattern:
Material Thickness d() |
SW |
1.5 |
3 |
3 |
6 |
4 |
6 |
4.5 |
6 |
5 |
8 |
5.5 |
8 |
7 |
10 |
9 |
12 |
12 |
15 |
Using a SWITCH function, we can represent the table above in this way:
switch(d(), 1.5, 3, 3, 6, 4, 6, 5, 8, 7, 10, 9, 12, 12, 15) — IMPORTANT: This is what we type in the expression of the parameter SW.
As a graph, the function looks like this:
And as a table:
WHEN |
SW IS |
d() <= 2.25 |
3 |
2.25< d() <= 2.5 |
6 |
2.5< d() <= 4.5 |
6 |
4.5< d() <= 6 |
8 |
6< d() <= 8 |
10 |
8< d() <= 10.5 |
12 |
10.5< d() |
15 |